Decoupling Inequalities for Multilinear Forms in Independent Symmetric Random Variables
نویسندگان
چکیده
منابع مشابه
Moment inequalities for sums of certain independent symmetric random variables
This paper gives upper and lower bounds for moments of sums of independent random variables (Xk) which satisfy the condition that P (|X|k ≥ t) = exp(−Nk(t)), where Nk are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which N(t) = |t| for some fixed 0 < r ≤ 1. This complements work of Glus...
متن کاملSOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملMaximal Inequalities for Associated Random Variables
In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].
متن کاملBernstein-like Concentration and Moment Inequalities for Polynomials of Independent Random Variables: Multilinear Case
Polynomials of independent random variables arise in a variety of fields such as Machine Learning, Analysis of Boolean Functions, Additive Combinatorics, Random Graphs Theory, Stochastic Partial Differential Equations etc. They naturally model the expected value of objective function (or lefthand side of constraints) for randomized rounding algorithms for non-linear optimization problems where ...
متن کاملSome Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables
In this paper, we obtain the upper exponential bounds for the tail probabilities of the quadratic forms for negatively dependent subgaussian random variables. In particular the law of iterated logarithm for quadratic forms of independent subgaussian random variables is generalized to the case of negatively dependent subgaussian random variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1986
ISSN: 0091-1798
DOI: 10.1214/aop/1176992449